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1 Introduction

Although the minimal supersymmetric extension of the standard model (MSSM) reveals

as a solution to the hierarchy problem, we still remain puzzled about the origin of the µ-

term in the superpotential, known as the µ-problem [1]. On the other hand, the fact that

neutrinos are not massless [2] suggests that the MSSM is incomplete. Motivated by these

two facts, the ”µ from ν” supersymmetric standard model (µνSSM) [3–5], which relies on

the existence of right-handed neutrinos, arises as an alternative to the MSSM, providing a

solution to the µ-problem and explaining the origin of neutrino masses.

In particular, the superpotential of the µνSSM contains, in addition to the usual

Yukawa couplings for quarks and charged leptons, Yukawa couplings for neutrinos Ĥu L̂ ν̂c,

terms of the type ν̂cĤdĤu producing an effective µ term through right-handed sneutrino

vacuum expectation values (VEVs), and also terms of the type ν̂cν̂cν̂c avoiding the existence

of a Goldstone boson and contributing to generate effective Majorana masses for neutrinos

at the electroweak scale. Actually, the explicit breaking of R-parity in this model by the

above terms produces the mixing of neutralinos with left- and right-handed neutrinos, and

as a consequence a generalized matrix of the seesaw type that gives rise at tree level to

three light eigenvalues corresponding to neutrino masses [3].

Following this proposal, several papers have studied different aspects of the µνSSM.

In [4] the parameter space of the µνSSM was analyzed in detail, studying the viable regions

which avoid false minima and tachyons, as well as fulfill the Landau pole constraint. The

structure of the mass matrices, and the associated particle spectrum was also computed,

paying special attention to the mass of the lightest Higgs. In [6] neutrino masses and mixing
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angles were discussed, as well as the decays of the lightest neutralino to two body (W -

lepton) final states. The correlations of the decay branching ratios with the neutrino mixing

angles were studied as another possible test of the µνSSM at the LHC. The phenomenology

of the µνSSM was also studied in [7], particularized for one and two generations of right-

handed sneutrinos, and taking into account all possible final states when studying the

decays of the lightest neutralino. Possible signatures that might allow to distinguish this

model from other R-parity breaking models were discussed qualitatively in the last two

papers. Let us finally mention that terms of the type ν̂cĤdĤu and ν̂cν̂cν̂c were also analysed

as sources of the observed baryon asymmetry in the Universe [8] and of neutrino masses

and bilarge mixing [9], respectively.

The goal of this work is twofold; first, we complete the analysis of the vacua of the

µνSSM presented in [4], studying spontaneous CP violation (SCPV) of the tree-level neutral

scalar potential. In particular, we explore CP violation in the lepton sector and show how

phases for the tree-level Maki-Nakagawa-Sakata matrix (MNS) [10] may arise due to the

fact that the minimum of the scalar potential with real parameters has complex VEV

solutions. Second, we discuss neutrino physics and the seesaw mechanism in the µνSSM,

including also phases.

Let us recall that, although there is evidence for CP violation in the quark sector of

the standard model, there are not experimental traces of it in the leptonic part. CP can be

explicitly broken through complex parameters in the Lagrangian or can arise spontaneously

in a CP conserving Lagrangian (e.g. with all the parameters being real) through complex

VEVs. Although the standard model as well as the MSSM do not allow for SCPV, in more

complicated models both sources of CP violation, complex parameters and complex VEVs,

could be present.

Concerning the quark sector, a recent study argues that the Cabibbo-Kobayashi-

Maskawa (CKM) matrix is likely complex [11]. This conclusion is supported by the mea-

surement of the unitarity triangle angle γ by BaBar and Belle collaborations [12, 13]. This

evidence of a complex CKM matrix has ruled out Next-to-MSSM (NMSSM)-like models

with SCPV (see e.g. [14]) for being the entire source of CP violation in the quark sector,

since the CKM matrix in such models is real. Thus complex parameters are necessary in

the quark sector. Given the structure of the µνSSM, this fact also holds for this model.

On the other hand, as mentioned above, we will show that SCPV can be generated in the

leptonic sector of the µνSSM, as well as phases for the MNS matrix.

One argument in favor of the presence of SCPV at the Lagrangian level is that, if

the determinant of the quark mass matrix is real, it leads to a solution to the strong CP

problem [15]. Extensions of the MSSM having this property, have been extensively studied

in the literature (see e.g. [16]). In those scenarios, the quark sector of the model is extended

in such a way that the effective 3× 3 CKM matrix is complex whereas the determinant of

the quark matrix is real.

Other authors have extended the Higgs sector of the models, leading to SCPV with

a complex CKM matrix [17]. Last but not least, in supersymmetric (SUSY) models with

both CP and Peccei-Quinn symmetries, SCPV can be used as a solution to the SUSY phase

problem [18].
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Regarding extensions of the µνSSM, the SCPV scenario with a complex CKM matrix

can be accomplished by adding two more families of Higgs doublets. In this case the model

would contain three families of matter and Higgs fields. This possibility is well motivated

phenomenologically, since the potential problem of flavor changing neutral currents can be

avoided [19]. In addition, having three Higgs families is favored in some string scenarios [20].

Indeed, extensions of the quark sector of the model can also be studied, without altering

the results here presented.

What we want to point out in this work is that SCPV is possible in the simplest

version of the µνSSM, i.e. with only one family of Higgs doublets, and therefore it is worth

studying its consequences. Following this philosophy, the paper is organized as follows.

Section 2 is devoted to complete the analysis of the vacuum of the µνSSM started in [4],

including SCPV solutions. In section 3 we examine the seesaw mechanism as the origin

of neutrino masses and mixing angles in the model. In section 4 we carry out a detailed

numerical analysis of the tree-level neutral scalar potential, showing explicitly that SCPV

solutions are possible, and discussing their implications on the neutrino sector of the model.

Finally, the conclusions are left for section 5. Minimization equations of the model and an

approximate analytical formula for neutrino masses are given in the appendices.

2 Complex VEVs in the µνSSM

The superpotential of the µνSSM introduced in [3] is given by

W =
∑

a,b

∑

i,j

[

ǫab

(

Yuij
Ĥb

u Q̂a
i ûc

j + Ydij
Ĥa

d Q̂b
i d̂c

j + Yeij
Ĥa

d L̂b
i êc

j + Yνij
Ĥb

u L̂a
i ν̂c

j

)]

−
∑

a,b

∑

i

ǫabλi ν̂
c
i Ĥa

d Ĥb
u +

∑

i,j,k

1

3
κijkν̂

c
i ν̂

c
j ν̂

c
k , (2.1)

where we take ĤT
d = (Ĥ0

d , Ĥ−
d ), ĤT

u = (Ĥ+
u , Ĥ0

u), Q̂T
i = (ûi, d̂i), L̂T

i = (ν̂i, êLi
), i, j, k =

1, 2, 3 are family indices, the 3×3 matrices Y are dimensionless Yukawa couplings, a, b = 1, 2

are SU(2)L indices and ǫ12 = 1. As mentioned in the Introduction, in addition to the MSSM

Yukawa couplings for quarks and charged leptons, the µνSSM superpotential contains

Yukawa couplings for neutrinos, and two additional type of terms involving the Higgs

doublet superfields, Ĥd and Ĥu and the three right-handed neutrino superfields, ν̂c
i , with

the dimensionless vector coupling λ and the totally symmetric tensor κ.

As discussed in [3], when the scalar components of the superfields ν̂c
i , denoted by

ν̃c
i , acquire VEVs of the order of the electroweak scale, an effective interaction µĤ1Ĥ2 is

generated through the fifth term in eq. (2.1), with µ ≡ λi〈ν̃c
i 〉. The last type of terms in

eq. (2.1) is allowed by all symmetries, and avoids the presence of an unacceptable Goldstone

boson associated to a global U(1) symmetry. In addition, it generates effective Majorana

masses for neutrinos at the electroweak scale. These two type of terms break explicitly

R-parity and lepton number.
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Working in the framework of gravity mediated supersymmetry breaking, the La-

grangian Lsoft is given by:

− Lsoft =
∑

i,j

[

∑

a

m2
Q̃ij

Q̃a
i

∗
Q̃a

j + m2
ũc

ij
ũc

i
∗
ũc

j + m2
d̃c

ij

d̃c
i

∗
d̃c

j +
∑

a

m2
L̃ij

L̃a
i

∗
L̃a

j

+ m2
ẽc
ij

ẽc
i
∗
ẽc
j + m2

ν̃c
ij

ν̃c
i
∗
ν̃c

j

]

+
∑

a

[

m2
Hd

Ha
d
∗ Ha

d + m2
Hu

Ha
u
∗Ha

u

]

+
∑

a,b

∑

i,j

ǫab

[

(AuYu)ij Hb
u Q̃a

i ũc
j + (AdYd)ij Ha

d Q̃b
i d̃c

j + (AeYe)ij Ha
d L̃b

i ẽc
j

+ (AνYν)ij Hb
u L̃a

i ν̃c
j + c.c.

]

+



−
∑

a,b

∑

i

ǫab(Aλλ)i ν̃c
i Ha

dHb
u +

∑

ijk

1

3
(Aκκ)ijk ν̃c

i ν̃
c
j ν̃

c
k + c.c.





−1

2

(

M3 λ̃3 λ̃3 + M2 λ̃2 λ̃2 + M1 λ̃1 λ̃1 + c.c.
)

. (2.2)

In addition to terms from Lsoft, the tree-level scalar potential receives the D and F

term contributions also computed in [3]. In the following we will suppose that CP is a

good symmetry of the model, taking all the parameters in the neutral scalar potential real

and assuming that CP is only violated by the VEVs of the scalar fields

〈H0
d〉 = eiϕvd vd , 〈H0

u〉 = eiϕvu vu , 〈ν̃i〉 = eϕνi νi , 〈ν̃c
i 〉 = e

ϕνc
i νc

i . (2.3)

We then obtain for the tree-level neutral scalar potential,

V 0 = Vsoft + VD + VF , (2.4)

where

Vsoft = m2
Hd

vdvd + m2
Hu

vuvu +
∑

i,j

m2
L̃ij

νi νj cos(χi − χj) +
∑

i,j

m2
ν̃c

ij
νc

i ν
c
j cos(ϕνc

i
− ϕνc

j
)

−2
∑

i

(Aλλ)iν
c
i vdvu cos(ϕv + ϕνc

i
) +

∑

i,j,k

2

3
(Aκκ)ijkν

c
i ν

c
jν

c
kcos(ϕνc

i
+ ϕνc

j
+ ϕνc

k
)

+2
∑

i,j

(AνYν)ijvuνiν
c
j cos(χi + ϕνc

j
) , (2.5)

VD =
G2

8

(

∑

i

νiνi + vdvd − vuvu

)2

, (2.6)

with G2 ≡ g2
1 + g2

2 , and

VF =
∑

i

(λi)
2v2

dv
2
u +

+
∑

i,j

λiλjv
2
dν

c
i ν

c
j cos(ϕνc

i
− ϕνc

j
) +

∑

i,j

λiλjv
2
uνc

i ν
c
j cos(ϕνc

i
− ϕνc

j
)

– 4 –
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+
∑

i,j,k,l

∑

m

κimkκlmjν
c
i ν

c
jν

c
kν

c
l cos(ϕνc

i
+ ϕνc

j
− ϕνc

k
− ϕνc

l
)

+2



−
∑

i,j

∑

k

κikjλkvdvuνc
i ν

c
j cos(ϕνc

i
+ ϕνc

j
− ϕv)

+
∑

i,j,k

∑

l

Yνjl
κilkvuνjν

c
i ν

c
k cos(ϕνc

i
+ ϕνc

k
− χj)

−
∑

i,j,k

Yνij
λkvdνiν

c
jν

c
k cos(χi + ϕνc

j
− ϕνc

k
− ϕv)

−
∑

i

∑

j

Yνij
λjvdv

2
uνi cos(ϕv − χi)





+
∑

i,j,k,l

Yνij
Yνkl

νiν
c
jνkν

c
l cos(χi − χk + ϕνc

j
− ϕνc

l
)

+
∑

i,j

∑

k

Yνik
Yνjk

v2
uνiνj cos(χi − χj)

+
∑

i,j

∑

k

Yνki
Yνkj

v2
uνc

i ν
c
j cos(ϕνc

i
− ϕνc

j
) . (2.7)

We observe that in the potential there are seven independent phases, and we have defined

them as

ϕv = ϕvu + ϕvd
, χi = ϕνi

+ ϕvu , ϕνc
i
. (2.8)

Now one can derive the fifteen minimization conditions with respect to the moduli vd,

vu, νc
i , νi, and phases ϕv , χi, and ϕνc

i
. These are written in appendix A. Finding minima

requires the solutions of equations (A.1)–(A.7). A standard way to obtain this is to give the

values of the cosines of the phases in terms of the moduli, using the triangle method [21–

23] for the equation of the phases, and then substitute the expressions in the minimum

equations for the moduli, solving them numerically. This method permits to demonstrate

the existence at tree level of only real minima in several models. This is for example the

case of the NMSSM [24], and the MSSM with extra doublets. The latter result has been

proved for the MSSM with an extra pair of Higgs doublets [22] (the so called 4D model), the

bilinear R-parity violation model (analogous to a 5D model because of the VEVs of the left-

handed sneutrinos), and the MSSM with two extra pair of Higgs doublets (6D model) [23].

Another way of finding minima consists of using as input the phases and solve the

fifteen equations to fix the variables that are linear in these equations, as it is the case of

some of the soft terms. This is the procedure that we will follow in section 4.

A simple way to prove the existence of CP violating minima in the µνSSM is using the

results of ref. [23], where the authors prove that SUSY scenarios for SCPV require singlets.

In particular, they found that, if the singlets do not introduce dimensional parameters in the

superpotential (i.e. no linear or bilinear terms), the MSSM extended with two gauge singlets

would be the minimal SUSY model where CP violation can be generated spontaneously.

Since that model is a limiting case of the µνSSM with vanishing neutrino Yukawa couplings

Yνij
= 0, λ3 = 0, and κ333 = κ322 = κ332 = κ311 = κ331 = κ123 = 0, this would prove

– 5 –
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that the µνSSM can break CP spontaneously. Let us remark that, since in the µνSSM

one is using a seesaw at the electroweak scale, the Yνij
have to be very small compared

with the other parameters [3], and as a consequence the neutral scalar potential can be

understood as a deformation of the MSSM extended with three gauge singlets. Although

there is no literature about general solutions that break CP spontaneously in the latter, it

is obvious that this model contains the MSSM extended with two singlets as a limiting case

when κ333 = κ322 = κ332 = κ311 = κ331 = κ123 = 0, and λ3 = 0. As already mentioned,

SCPV solutions are well known in this case [23, 25]. Thus one could argue that a subset of

solutions with neutrino masses different from zero could be obtained deforming the scalar

potential of the MSSM extended with three singlets1 through non-zero Yνij
.

In section 4 we will do a thorough numerical analysis showing explicitly how SCPV is

realizable in the leptonic sector. Nevertheless, it is worth pointing out here that to find

complex solutions is a non-trivial task compared to the search of real ones. As we will

show, the key of SCPV is on the (Aκκ)ijk terms used as inputs. In order to fulfill the

minimization equations, the basic requirement is that entries different from (Aκκ)iii must

be allowed. In addition, these parameters have to be chosen carefully to obtain SCPV as

a global minimum.

In the next section we will study the seesaw mechanism in the model as the origin of

neutrino masses and mixing angles.

3 Neutrino masses and mixing angles

In the µνSSM the MSSM neutralinos mix with the left- and right-handed neutrinos as

a consequence of R-parity violation. Therefore the right-handed neutrinos behave as

singlino components of the neutralinos. In the basis χ0T
= (B̃0, W̃ 0, H̃d, H̃u, νRi

, νLi
)

the neutralino-neutrino mass matrix was given in [3, 4] for real VEVs. Considering now

the possibility of complex VEVs the result is given by

Mn =

(

M m

mT 03×3

)

, (3.1)

where the neutralino mass matrix is

M =

0

B

B

B

B

B

B

B

B

B

@

M1 0 −A〈H0

d
〉∗ A〈H0

u〉∗ 0 0 0

0 M2 B〈H0

d
〉∗ −B〈H0

u〉∗ 0 0 0

−A〈H0

d
〉∗ B〈H0

d
〉∗ 0 −λi〈ν̃c

i 〉 −λ1〈H0
u〉 −λ2〈H0

u〉 −λ3〈H0
u〉

A〈H0
u〉∗ −B〈H0

u〉∗ −λi〈ν̃c
i 〉 0 −λ1〈H0

d
〉+Yνi1

〈ν̃i〉 −λ2〈H0

d
〉+Yνi2

〈ν̃i〉 −λ3〈H0

d
〉+Yνi3

〈ν̃i〉
0 0 −λ1〈H0

u〉 −λ1〈H0

d
〉+Yνi1

〈ν̃i〉 2κ11j〈ν̃c
j 〉 2κ12j〈ν̃c

j 〉 2κ13j 〈ν̃c
j 〉

0 0 −λ2〈H0
u〉 −λ2〈H0

d
〉+Yνi2

〈ν̃i〉 2κ21j〈ν̃c
j 〉 2κ22j〈ν̃c

j 〉 2κ23j 〈ν̃c
j 〉

0 0 −λ3〈H0
u〉 −λ3〈H0

d
〉+Yνi3

〈ν̃i〉 2κ31j〈ν̃c
j 〉 2κ32j〈ν̃c

j 〉 2κ33j 〈ν̃c
j 〉

1

C

C

C

C

C

C

C

C

C

A

,

(3.2)

1Since only mass differences for neutrino masses have been measured, in principle two right-handed neu-

trino supermultiplets are enough to give two tree-level masses and also break CP spontaneously. Thus a ver-

sion of the µνSSM with only two right-handed neutrinos instead of three could be formulated. Nevertheless,

we will follow the philosophy that the existence of three generations of all kind of leptons is more natural.

– 6 –



J
H
E
P
0
8
(
2
0
0
9
)
1
0
5

with A = G√
2
sin θW , B = G√

2
cos θW , and

mT =







− g1√
2
〈ν̃1〉∗ g2√

2
〈ν̃1〉∗ 0 Yν1i

〈ν̃c
i 〉 Yν11

〈H0
u〉 Yν12

〈H0
u〉 Yν13

〈H0
u〉

− g1√
2
〈ν̃2〉∗ g2√

2
〈ν̃2〉∗ 0 Yν2i

〈ν̃c
i 〉 Yν21

〈H0
u〉 Yν22

〈H0
u〉 Yν23

〈H0
u〉

− g1√
2
〈ν̃3〉∗ g2√

2
〈ν̃3〉∗ 0 Yν3i

〈ν̃c
i 〉 Yν31

〈H0
u〉 Yν32

〈H0
u〉 Yν33

〈H0
u〉






. (3.3)

For simplicity the summation convention on repeated indices was used in the above two

equations. The above matrix (3.1) is of the seesaw type giving rise to the neutrino masses

which have to be very small. This is the case since the entries of the matrix M are much

larger than the ones in the matrix m. Notice in this respect that the entries of M are of

the order of the electroweak scale while the ones in m are of the order of the Dirac masses

for the neutrinos [3, 4]. Therefore in a first approximation the effective neutrino mixing

mass matrix can be written as

meff = −mT · M−1 · m. (3.4)

Because meff is symmetric and m†
effmeff is Hermitian, one can diagonalize them by a unitary

transformation

UT
MNSmeffUMNS = diag(mν1

,mν2
,mν3

), (3.5)

U †
MNSm

†
effmeffUMNS = diag(m2

ν1
,m2

ν2
,m2

ν3
). (3.6)

In appendix B, eq. (B.1), we present an approximate analytical expression for the

effective neutrino mass matrix of the µνSSM with SCPV, neglecting all the terms containing

Y 2
ν ν2, Y 3

ν ν and Yνν
3 in eq. (3.4) due to the smallness of Yν and ν [3]. In the limit of

vanishing phases ϕvu = ϕvd
= ϕνc

i
= ϕνi

= 0, eq. (B.1) is reduced to eq. (B.9). This is the

formula that we will use in the following, in order to have a qualitative idea of how the

seesaw mechanism works in this model.

Let us first rewrite the expression (B.9) in the following form:

(meff |real)ij ≃
v2
u

6κνc
Yνi

Yνj
(1−3 δij) −

1

2Meff

[

νiνj +
vd

(

Yνi
νj+Yνj

νi

)

3λ
+

Yνi
Yνj

v2
d

9λ2

]

, (3.7)

with

Meff ≡ M

[

1 − v2

2M
(

κνc2 + λvuvd

)

3λνc

(

2κνc2 vuvd

v2
+

λv2

2

)

]

, (3.8)

which coincides with the result in [6], where the possibility of obtaining an adequate seesaw

with diagonal Yukawa couplings was also pointed out. Here v2 = v2
u + v2

d +
∑

i ν2
i ≈ v2

u + v2
d

with v ≈ 174 GeV has been used, since νi ≪ vu, vd [3], and let us recall that we are also

using couplings λi ≡ λ, a tensor κ with terms κiii ≡ κi ≡ κ and vanishing otherwise,

diagonal Yukawa couplings Yνii
≡ Yνi

, VEVs νc
i ≡ νc, and 1

M =
g2

1

M1
+

g2

2

M2
.

In the limit where gauginos are very heavy and decouple (i.e. M → ∞), eq. (3.7)

reduces to

(meff |real)ij ≃
v2
u

6κνc
Yνi

Yνj
(1 − 3 δij) . (3.9)
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It is interesting to note that in contrast with the ordinary seesaw (i.e. generated only

through the mixing between left- and right-handed neutrinos), where the case of diagonal

Yukawas would give rise to a diagonal mass matrix of the form

(meff |ordinary seesaw)ij ≃
−v2

uYνi
Yνj

δij

2κνc
, (3.10)

in this case we have an extra contribution given by the first term of eq. (3.9). This is

due to the effective mixing of the right-handed neutrinos and Higgsinos in this limit, and

produces off-diagonal entries in the mass matrix. Besides, when right-handed neutrinos

are also decoupled (i.e. νc → ∞), the neutrino masses are zero as corresponds to the case

of a seesaw with only Higgsinos.

Another observation is that, independently on the nature of the lightest neutralino,

Higgsino-like or νc-like or even a mixture of them (recall that the νc can be interpreted also

as the singlino component of the neutralino since R-parity is broken), the form of the effec-

tive neutrino mass matrix is the same when the gauginos are decoupled, as given by (3.9).

Another limit which is worth discussing is νc → ∞. Then, eq. (3.7) reduces to the form

(meff |real)ij ≃ − 1

2M

[

νiνj +
vd(Yνi

νj + Yνj
νi)

3λ
+

Yνi
Yνj

v2
d

9λ2

]

. (3.11)

We can also see that for vd → 0 (i.e. tan β = vu

vd
→ ∞) one obtains

(meff |real)ij ≃ −νiνj

2M
. (3.12)

Note that this result can actually be obtained if νi ≫ Yνi
vd

3λ , and that this relation can be

fulfilled with vd ∼ vu ∼ 174 GeV for suitable values of λ. It means that decoupling right-

handed neutrinos/singlinos and Higgsinos, the seesaw mechanism is generated through the

mixing of left-handed neutrinos with gauginos. This is a characteristic feature of the seesaw

in the well-known bilinear R-parity violation model (BRpV) [26].

The seesaw in the µνSSM comes, in general, from the interplay of the above two limits.

Namely, the limit where we suppress only certain Higgsino and gaugino mixing. Hence,

taking vd → 0 in eq. (3.7), which means quite pure gauginos but Higgsinos mixed with

right-handed neutrinos, we obtain

(meff |real)ij ≃ v2
u

6κνc
Yνi

Yνj
(1 − 3δij) −

1

2Meff
νiνj , (3.13)

As above, we remark that actually this result can be obtained if νi ≫ Yνi
vd

3λ . The effective

mass Meff = M
(

1 − v4

12κMνc3

)

represents the mixing between gauginos and Higgsinos-νc

that is not completely suppressed in this limit. Expression (3.13) is more general than the

other two limits studied above. On the other hand, for typical values of the parameters

involved in the seesaw, Meff ≈ M , and therefore we get a simple formula that can be used

to understand the seesaw mechanism in this model in an qualitative way, that is

(meff |real)ij ≃
v2
u

6κνc
Yνi

Yνj
(1 − 3δij) −

1

2M
νiνj. (3.14)
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∆m2
sol/10

−5 eV2 sin2 θ12 sin2 θ13 sin2 θ23 ∆m2
atm/10−3 eV2

7.14-8.19 0.263-0.375 < 0.046 0.331-0.644 2.06-2.81

Table 1. Allowed 3σ ranges for the neutrino masses and mixings as discussed in [27].

Figure 1. The two possible hierarchies of neutrino masses as shown in [28]. The pattern on the left

side corresponds to the normal hierarchy and is characterized by one heavy state with a very little

electron neutrino component, and two almost degenerate light states with a mass difference which

is the solar mass difference. The pattern on the right side corresponds to the inverted hierarchy

and is characterized by two almost degenerate heavy states with a mass difference that is the solar

mass difference, and a light state which has very little electron neutrino component. In both cases

the mass difference between the heaviest/lightest eigenstate and the almost degenerate eigenstates

is the atmospheric scale.

The simplicity of eq. (3.14), in contrast with the full formula given by eq. (3.7), comes from

the fact that the mixing between gauginos and Higgsinos-νc is neglected.

To continue the discussion of the seesaw in the µνSSM, let us remind that two mass

differences and mixing angles have been measured experimentally in the neutrino sector.

The allowed 3σ ranges for these parameters are shown in table 1. We also show the

compositions of the mass eigenstates in figure 1 for the normal and inverted hierarchy cases.

For the discussion, hereafter we will use indistinctly the subindices (1, 2, 3) ≡ (e, µ, τ).

Due to the fact that the mass eigenstates have, in a good approximation, the same

composition of νµ and ντ we start considering Yν2
= Yν3

and ν2 = ν3, and therefore

eq. (3.14) takes the form

meff =







d c c

c A B

c B A






, (3.15)

– 9 –



J
H
E
P
0
8
(
2
0
0
9
)
1
0
5

where

d = − v2
u

3κνc
Y 2

ν1
− 1

2M
ν2
1 ,

c =
v2
u

6κνc
Yν1

Yν2
− 1

2M
ν1ν2,

A = − v2
u

3κνc
Y 2

ν2
− 1

2M
ν2
2 ,

B =
v2
u

6κνc
Y 2

ν2
− 1

2M
ν2
2 . (3.16)

The eigenvalues of this matrix are the following:

1

2

(

A+B−
√

8c2+(A+B−d)2+d
)

,
1

2

(

A+B+
√

8c2+(A+B−d)2+d
)

, A−B , (3.17)

and the corresponding eigenvectors (for simplicity are not normalised) are
(

−A+B+
√

8c2+(A+B−d)2−d

2 , c, c

)

,

(

−A−B+
√

8c2+(A+B−d)2+d

2c , 1, 1

)

,

(0,−1, 1) . (3.18)

We have ordered the eigenvalues in such a way that it is clear how to obtain the normal

hierarchy for the νµ-ντ degenerate case. Then we see that sin2 θ13 = 0 and sin2 θ23 = 1
2 , as

in the tri-bimaximal mixing regime. Also we have enough freedom to fix the parameters in

such a way that the experimental values for the mass differences and the remaining angle

θ12 can be reproduced. It is important to mention that the above two values of the angles

are a consequence of considering the example with νµ-ντ degeneration, and therefore valid

even if we use the general formula (3.7) instead of the simplified expression (3.14). Notice

that eqs. (3.15), (3.17) and (3.18) would be the same but with the corresponding values of

A,B, c and d.

Let us remark that the fact that to obtain the correct neutrino angles is easy in this

kind of seesaw is due to the following characteristics: R-parity is broken and the relevant

scale is the electroweak one. In a sense we are giving an answer to the question why the

mixing angles are so different in the quark and lepton sectors.

To show qualitatively how we can obtain an adequate seesaw with diagonal neutrino

Yukawa couplings, let us first consider the limit2 c → 0 . In this limit the electron neutrino

is the lightest neutrino, and is completely decoupled from the rest. The second eigenvector

has no νe composition (sin θ12 → 0), and it is half νµ and half ντ . Understanding this case

we can easily generalize the situation to the case sin θ12 6= 0, switching on the parameter

c. The eigenvalues in this limit are

d , A + B, A − B, (3.19)

2Actually this limit can be obtained taking Yν1
→ 0, ν1 → 0, implying c → 0, and also d → 0, and

leading to similar conclusions. This limit means that the electron neutrino is decoupled from the other two

neutrinos, having a negligible mass.
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where

|d| =

∣

∣

∣

∣

v2
u

3κνc
Y 2

ν1
+

1

2M
ν2
1

∣

∣

∣

∣

,

|A + B| =

∣

∣

∣

∣

v2
u

6κνc
Y 2

ν2
+

1

M
ν2
2

∣

∣

∣

∣

,

|A − B| =
v2
u

2κνc
Y 2

ν2
. (3.20)

We can see that ∆m2
atm ∼ |4AB| =

∣

∣

∣

∣

4

(

v4
uY 4

ν2

18κ2νc2
− 1

4M2 ν4
2 − v2

uY 2
ν2

ν2

2

12Mκνc

)∣

∣

∣

∣

and ∆m2
sol ∼ |(A +

B)2 − d2| =

∣

∣

∣

∣

(

v2
u

6κνc Y 2
ν2

+ 1
M ν2

2

)2
−
(

v2
u

3κνc Y 2
ν1

+ 1
2M ν2

1

)2
∣

∣

∣

∣

.

It is important to note that we need |A−B| > |A + B| for the normal hierarchy case,

otherwise the θ12 angle is zero even when c is not neglected. This is easy to obtain for

M ≫ 2κνc. If M ∼ 2κνc, using different signs for the effective Majorana and gaugino

masses helps to fulfill the above inequality. For this to hold with our convention, one must

take M < 0.

In the inverted hierarchy scenario |A − B| > |A + B| leads the angle θ12 to zero also

with c 6= 0 which is not phenomenologically viable. Then we impose |A − B| < |A + B|.
Note that when c is switched on, the parameter d has to be large enough for having the

associated neutrino with an intermediate mass, as corresponds to the inverted hierarchy

scenario. Therefore in this case we can also have easily the tri-bimaximal mixing regime

for M ≪ 2κνc. When M ∼ 2κνc, having M > 0 helps to fulfill the above condition.

Let us finally remark that we can get the complete tri-bimaximal mixing regime

sin2 θ13 = 0, sin2 θ23 = 1/2 and sin2 θ12 = 1/3 fixing in eq. (3.15) c = A + B − d. In

this way we obtain the eigenvalues

− (A + B) + 2d , 2(A + B) − d, A − B, (3.21)

and from eq. (3.18), after normalization, we arrive to sin2 θ12 = 1/3.

Breaking the degeneracy between the Yν and ν of the muon and tau neutrinos, it is

possible to find more general solutions in the normal and inverted hierarchy cases. We

will show this with numerical examples in the next section, working always in the case

M ∼ 2κνc. Note also that in the case of degenerate νµ-ντ parameters, as the Dirac CP

phase always appears in the MNS matrix in the form sin θ13e
iδ (see eq. (4.2) below), the

SCPV effect is suppressed since sin θ13 is negligible. This is not the case if we break the

degeneration between νµ and ντ .

When the vacuum is non CP-conserving the situation is more complicated since new

relative phases are present, but the idea still holds. In the next section we will use the

above results to find numerical examples in the general case where also phases are generated

through complex vacua. Examples where changing the sign of M the second and third

eigenvalue are interchanged and the behavior is similar to the one described in this section.
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4 Results

In section 2 we have given a simple argument to show that the µνSSM can violate CP

spontaneously. In section 3 we have discussed how to obtain correct neutrino masses and

mixing angles. In this section we sketch the numerical method used for the search of global

minima of the µνSSM with SCPV, giving rise also to an effective neutrino mass matrix that

reproduces correctly the phenomenology of the neutrino sector according to observations.

We also give some examples.

For simplicity, we assume that all the parameters appearing in the potential are di-

agonal in flavor space at the electroweak scale, except the trilinear (Aκκ)ijk terms whose

entries different from (Aκκ)iii are relevant to break CP spontaneously. We introduce the

following notation for the flavor diagonal free parameters of the scalar potential: κi, Yνi
,

(AνYν)i, m2
L̃i

, m2
ν̃c

i
with i = 1, 2, 3 being flavor indices. Under this assumption, the neutral

scalar potential in (2.4) is obviously simplified, and as a consequence also the minimiza-

tion conditions (A.1)–(A.7) are simplified. In addition to the complex VEVs, the potential

depends on λi, κi, Yνi
, (Aκκ)ijk, (Aλλ)i, (AνYν)i, mHd

, mHu , mν̃c
i

and mL̃i
.

The strategy followed to find minima of the model consists of solving the minimization

equations in terms of the soft parameters that are linear in those equations. More precisely,

the three minimization equations (A.7), corresponding to ∂V
∂χi

= 0, are used to solve the

values of (AνYν)i. Using this result, eqs. (A.6) for i = 2, 3, corresponding to ∂V
∂ϕc

ν2,3

= 0, are

then solved for (Aλλ)2,3. Repeating the procedure using the equation (A.5), ∂V
∂ϕv

= 0, one

obtains (Aλλ)1. Finally, eq. (A.6) for i = 1 is used to get (Aκκ)111. The conditions with

respect to the moduli of the VEVs (A.1)–(A.4) are used to get the squared soft masses.

Once this is done, we ensure that the critical point found (i.e. with non-vanishing phases

for the VEVs) is a global minimum through a numerical procedure. As discussed in [4],

one has to check in particular that the minimum found is deeper than the local minima

with some or all the VEVs vanishing.

To accomplish the numerical task of finding global minima we need as inputs the eight

moduli and seven phases of the VEVs, the λi, κi and Yνi
couplings and the soft-trilinear

terms (Aκκ)ijk with (i, j, k) 6= (1, 1, 1). For simplicity, we assume a special structure for

the latter: (Aκκ)222 = (Aκκ)333, a common value for (Aκκ)ijk with i, j, k 6= 1, and another

common value for (Aκκ)ijk with one or two indices equal to 1. Moreover, let us recall that

the modulus of the SUSY Higgs VEVs, can be determined from v2 = v2
d + v2

u +
∑

i ν2
i ≈

v2
d + v2

u with v ≈ 174 GeV , and the value of tan β = vu

vd
.

Once we find global minima, the next step is to build the neutralino mass matrix and

to diagonalize it perturbatively in order to extract the effective neutrino mass matrix. Di-

agonalizing the effective neutrino mass matrix, we can extract the mass differences and the

mixing angles of the neutrino sector and compare them with the data. The key for obtain-

ing a phenomenologically viable neutrino sector, once we are in a global minimum, consists

of varying either the neutrino Yukawa couplings, the left-handed sneutrino VEVs or the soft

gaugino masses. This approach does not alter the vacuum structure previously obtained.

Let us now describe the details on how we proceed with the phenomenological analysis

of the neutrino sector of the model. First, we assume for simplicity the GUT inspired
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λi = 0.13 κi = 0.55 νc
i = 1000 GeV

tan β = 29 ϕv = −π ϕνc
1

= π
7

ϕνc
2

= ϕνc
3

= −π
7 χ1 = −π

6 χ2 = χ3 = π
6

Table 2. Numerical values of the relevant input parameters for a global minimum that breaks

CP spontaneously.

relation between the gaugino masses M1 and M2, M1 =
α2

1

α2

2

M2, implying M2 ≃ 2M1 at low

energy. As discussed in section 3, one has to diagonalize the neutrino effective mass matrix,

meff = −mT ·M−1 ·m. Since it is a complex symmetric matrix, it can be diagonalized with

an unitary transformation, as it is shown in eqs. (3.5) and (3.6). For the MNS matrix we

follow the standard parameterization

UMNS = diag
(

eiδe , eiδµ , eiδτ

)

· V · diag
(

e−iφ1/2, e−iφ2/2, 1
)

, (4.1)

where φ1 and φ2 are the Majorana phases and V is given by

V =







c12c13 s12c13 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13






. (4.2)

Here cij ≡ cos θij and sij ≡ sin θij whereas δ is the Dirac CP violating phase. The

conventions used for extracting the mixing angles and the Majorana and Dirac phases

from eqs. (4.1) and (4.2) are outlined in ref. [29].

Taking all the above into account, we show in table 2 the parameters that charac-

terize an example of a global minimum that breaks CP spontaneously. The values of

the soft parameters not determined by the minimization equations have been chosen to be

(Aκκ)iii = 280 GeV for i 6= 1, (Aκκ)ijk = −40 GeV for i, j, k 6= 1, and (Aκκ)ijk = −120 GeV

for one or two indices equal to 1. In table 3 we show the neutrino/neutralino inputs used

in order to obtain a νµ-ντ degenerated case with normal hierarchy, producing values of

masses and angles within the ranges of table 1. In particular, we obtain sin2 θ13 ∼ 0

and sin2 θ23 = 0.5, as expected from the discussion in section 3, sin2 θ12 = 0.323, and

neutrino masses m1 = 0.00305 eV, m2 = 0.00949 eV and m3 = 0.05091 eV, producing

∆m2
solar = 8.08× 10−5 eV2 and ∆m2

atm = 2.50× 10−3 eV2. The corresponding values of the

soft terms calculated with the minimization equations are presented in table 4.

It is worth noticing that for this solution, the soft masses of the left-handed sneutrinos,

mL̃i
, do not need to be very different, and, actually, in this case they are almost degenerate

∼ 3700 GeV. This can be understood using the minimization equations (A.4), neglecting

the terms with products of Yukawas. When
Yνi

νi
=

Yνj

νj
, ∀ i, j, one obtains m2

L̃i
= m2

L̃j
.

However, we have to point out that the values obtained for other soft parameters are not

so natural in a SUSY framework. Notice for example that Aν ∼ −7TeV, Aλ1
∼ −11 TeV,

whereas Aκ111
∼ −0.5 GeV. Indeed, this is a consequence of the particular solution shown

in table 2.

Although it is non-trivial to find realistic solutions, since many minima which appar-

ently are acceptable, at the end of the day turn out to be false minima, we have been able to
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Yν1
= 4.25 × 10−7 Yν2

= Yν3
= 1.36 × 10−6 M1 = −340 GeV

ν1 = 3.88×10−5 GeV ν2 = ν3 = 1.24 × 10−4 GeV

Table 3. Numerical values of the neutrino/neutralino inputs that reproduce the neutrino experi-

mental constraints, and correspond to the normal hierarchy scenario.

(AνYν)1 ≃ −0.0031 GeV (AνYν)2 ≃ −0.010GeV (AνYν)3 ≃ −0.010 GeV

(Aλλ)1 ≃ −1487 GeV (Aλλ)2 ≃ −679 GeV (Aλλ)3 ≃ −679 GeV

(Aκκ)111 ≃ −0.25 GeV m2
Hd

≃ 7.0325×107 GeV2 m2
Hu

≃ −47200 GeV2

m2
ν̃c
1

≃ 260140 GeV2 m2
ν̃c
2

≃ −100820 GeV2 m2
ν̃c
3

≃ −100820 GeV2

m2
L̃1

≃ m2
L̃2

=m2
L̃3

=1.37×107 GeV2

Table 4. Values of the soft terms calculated with the minimization equations for the global mini-

mum associated to the parameters shown in table 2.

λi = 0.10 κi = 0.35 νc
1 = 835 GeV , νc

2 = νc
3 = 685 GeV

tan β = 29 ϕv = −π ϕνc
1

= π
7

ϕνc
2

= ϕνc
3

= −π
7 χ1 = −π

6 χ2 = χ3 = π
6

Table 5. Numerical values of the relevant inputs for the second global minimum discussed in the

text, that breaks CP spontaneously.

Yν1
= 5.4 × 10−7 Yν2

= Yν3
= 9.2 × 10−7 M1 = −340 GeV

ν1 = 3.7 × 10−5 GeV ν2 = ν3 = 8.8 × 10−5 GeV

Table 6. Numerical values of the neutrino/neutralino inputs for the second global minimum dis-

cussed in the text, that reproduce the neutrino experimental constraints and correspond to the

normal hierarchy scenario.

find more sensible solutions. This is the case of the one shown in table 5, with the values of

the input soft parameters (Aκκ)iii = −150 GeV for i 6= 1, (Aκκ)ijk = 75 GeV for i, j, k 6= 1

and (Aκκ)ijk = −50 GeV for one or two indices equal to 1. For example, lowering the values

of νc one is able to lower the trilinear terms Aν ∼ −3TeV in order to fulfill eqs. (A.7) (also

lowering κ contributes to this result), and also the soft masses mL̃i
∼ 2.8 TeV, as shown in

table 7. Lowering λ one is able to lower the trilinears Aλ1
∼ −1.5 TeV, Aλ2,3

∼ −840 GeV,

in order to fulfill eqs. (A.5) and (A.6). Notice finally that the use of non-degenerate νc
i

allows to increase the trilinear Aκ111
∼ 36 GeV. In table 6 we show the corresponding neu-

trino/neutralino inputs producing values of masses and angles within the ranges of table 1.

Modifying the values of the angles we can also obtain other interesting solutions. See

for example the one shown in tables 8, 9, and 10. In this case the values of the input

soft parameters are chosen to be (Aκκ)iii = −200 GeV for i 6= 1, (Aκκ)ijk = 125 GeV for

i, j, k 6= 1 and (Aκκ)ijk = −75 GeV for one or two indices equal to 1. Notice that now the
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(AνYν)1 ≃ −0.00209 GeV (AνYν)2 ≃ −0.00294 GeV (AνYν)3 ≃ −0.00294 GeV

(Aλλ)1 ≃ −156 GeV (Aλλ)2 ≃ −84 GeV (Aλλ)3 ≃ −84 GeV

(Aκκ)111 ≃ 12.7 GeV m2
Hd

≃ 5.36 × 106 GeV2 m2
Hu

≃ −37910 GeV2

m2
ν̃c
1

≃ 51035 GeV2 m2
ν̃c
2

≃ 69155 GeV2 m2
ν̃c
3

≃ 69155 GeV2

m2
L̃1

= 8.07 × 106 GeV2 m2
L̃2

= 3.92 × 106 GeV2 m2
L̃3

= 3.92 × 106 GeV2

Table 7. Values of the soft terms calculated with the minimization equations for the second global

minimum discussed in the text, associated to the parameters shown in table 5.

λi = 0.10 κi = 0.42 νc
1 = 850 GeV , νc

2 = νc
3 = 550 GeV

tan β = 29 ϕv = −π ϕνc
1

= π
5

ϕνc
2

= ϕνc
3

= −π
5 χ1 = −π

3 χ2 = χ3 = π
3

Table 8. Numerical values of the relevant inputs for the third global minimum discussed in the

text, that breaks CP spontaneously.

Yν1
= 1.9 × 10−7 Yν2

= Yν3
= 8.5 × 10−7 M1 = −100 GeV

ν1 = 6 × 10−5 GeV ν2 = ν3 = 4.9 × 10−5 GeV

Table 9. Numerical values of the neutrino/neutralino inputs for the third global minimum discussed

in the text, that reproduce the neutrino experimental constraints and correspond to the normal

hierarchy scenario.

values obtained for the soft terms are also of this order. In particular, the trilinears are

Aν1
∼ −657 GeV, Aν2,3

∼ −429 GeV, Aλ1
∼ −990 GeV, Aλ2,3

∼ −830 GeV, and Aκ111
∼

100 GeV. For the soft masses we obtain mL̃1
∼ 628 GeV, mL̃2,3

∼ 950 GeV.

A general analysis of the parameter space, finding other interesting complex vacua, is

obviously extremely complicated given the large number of parameters involved, and be-

yond the scope of this paper. Nevertheless, we have checked that other sensible solutions

can indeed be obtained modifying adequately the parameters. In the following we will work

with the solution associated to the parameters of table 2, since the discussion below is essen-

tially valid for other solutions. Our strategy will consist of varying the neutrino/neutralino

inputs Yνi
, νi and M1 in such a way that the derived neutrino mass differences and mixing

angles are within the ranges of table 1. As mentioned above, this procedure will not alter

the vacuum structure found. Notice in this respect that gaugino masses do not contribute

to the minimization equations, and that the values of Yνi
and νi are very small. Let us

also mention that this strategy can indeed be applied to the much more simple issue of

analyzing real vacua. In particular, it was shown in [4] that many global minima with real

VEVs can be found. For them neutrino/neutralino inputs Yνi
, νi, M1, similar to those

studied here are also valid.

As noted in section 3 we have chosen M1 < 0 in order to guaranty a viable θ12 angle.

It is worth pointing out here that a redefinition of the parameters leaving the Lagrangian

invariant can be made, in such a way that M1 becomes positive and other parameters such
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(AνYν)1 ≃ −0.000125 GeV (AνYν)2 ≃ −0.000365 GeV (AνYν)3 ≃ −0.000365 GeV

(Aλλ)1 ≃ −99 GeV (Aλλ)2 ≃ −83 GeV (Aλλ)3 ≃ −83 GeV

(Aκκ)111 ≃ 41.9 GeV m2
Hd

≃ 3.6 × 106 GeV2 m2
Hu

≃ −25118 GeV2

m2
ν̃c
1

≃ −24393 GeV2 m2
ν̃c
2

≃ 208377 GeV2 m2
ν̃c
3

≃ 208377 GeV2

m2
L̃1

= 394777 GeV2 m2
L̃2

= 903528 GeV2 m2
L̃3

= 903528 GeV2

Table 10. Values of the soft terms calculated with the minimization equations for the third global

minimum discussed in the text, associated to the parameters shown in table 8.

as the VEVs become negative, describing indeed the same physics. In our convention the

VEVs, vd, vu, νc
i , νi, are always taken positive.

We would also like to stress that all the numerical results have been obtained without

any approximation, that is, with the exact expression of the 10×10 neutralino mass matrix,

calculating numerically the effective neutrino mass matrix and diagonalizing it.

Let us first study how the neutrino mass differences depend on the inputs. In section 3

we showed that in this scenario there are two different contributions to the seesaw mech-

anism; the one involving right-handed neutrinos (and Higgsinos) given by
(Yνi

vu)2

2κνc , where

the Dirac and Majorana masses are parameterized by Yνi
vu and 2κνc, respectively, and

the contribution coming from the gaugino seesaw given by (g1νi)
2

M1
+ (g2νi)

2

M2
, where the Dirac

and Majorana masses are parameterized by gανi and Mα, respectively, with α = 1, 2.

Figures 2a and 2b show that the heaviest eigenvalue (dashed line) has very little

electron-neutrino component, as expected in the normal hierarchy scenario (see figure 1),

and therefore it does not depend on (Yν1
vu)2/(2κνc), whereas the intermediate (solid line)

and lightest (dotted line) eigenvalues, that have sizeable electron-neutrino components,

grow with this term. As a consequence of the latter, the squared solar mass difference

grows as well. On the other hand, following the arguments related to eq. (3.14), we can see

in figures 2c and 2d that the heaviest eigenvalue is controlled by the contribution of the

seesaw with right-handed neutrinos having an important muon/tau neutrino composition,

thus we observe how the heaviest eigenvalue grows with (Yν2
vu)2/(2κνc) and, as a conse-

quence, the squared atmospheric mass difference grows accordingly. The variation with

(Yν3
vu)2/(2κνc) is analogue.

Figure 3 is analogous to figure 2 but showing the squared neutrino mass differences

dependence on the gaugino seesaw component. In this case, because the heaviest eigenstate

(dashed line) practically does not mix with the electron neutrino we can see that it does not

vary with ((g1νi)
2/M1 + (g2νi)

2/M2)
2 for i = 1, 2, 3. On the other hand, the intermediate

eigenstate grows with the mixing with the gauginos, as explained in section 3 with M1 < 0,

therefore the squared solar mass difference also grows.

Let us now discuss the mixing angles. Note that in the νµ-ντ degenerate case with

normal hierarchy and M1 < 0 we have obtained sin2 θ13 = 0 and sin2 θ23 = 1
2 . In figure 4 we

present the variation of sin2 θ12 with the ratio of the parameters that control the gaugino

seesaw, b2
e/b

2
µ, where for the sake of simplicity we take bi = Yνi

vd + 3λνi and we do not

consider the complicated factors containing phases in eqs. (B.5).

To obtain results different from sin2 θ23 ∼ 1
2 and sin2 θ13 ∼ 0, in the following we
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Figure 2. Squared neutrino masses versus (Yνi
vu)4/(2κνc)2. (a) and (b) show for i = 1 the two

heaviest and lightest neutrinos, respectively. The same for (c) and (d) but for i = 2.

consider the possibility of having different values for the Yν and ν parameters for µ and

τ neutrinos. We show in figure 5a sin2 θ23 as a function of the ratio of the term that

controls the Higgsino-νc seesaw, a2
µ/a2

τ . When aµ/aτ goes to 1, the νµ-ντ degeneracy is

recovered and sin2 θ23 goes to 1/2 as expected. In figure 5b we show sin2 θ13 as a function

of
4aµaτ

(aµ+aτ )2 that is a good measure of the degeneration in this case. Note that when

4aµaτ/(aµ + aτ )
2 → 1 the degeneracy is recovered and sin2 θ13 → 0 as expected. The

parameters ai have been defined in eq. (B.2). Let us point out that sin2 θ13 < 10−3 since

we are breaking the degeneration between µ and τ neutrinos but the term that controls

the higgsino-νc seesaw for the first family is very small compared to the other two families.
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Figure 3. The same as in figure 2 but for the squared neutrino masses versus [(g1νi)
2/M1 +

(g2νi)
2/M2]

2.

As mentioned previously, the µνSSM with SCPV also predicts non-zero CP phases in

the MNS matrix. We have checked numerically that for each of the experimentally allowed

regions found, the two Majorana CP phases and the Dirac CP phase are different from

zero. This fact is reflected in figure 6 where we present two plots in the δ − φ1 and δ − φ2

planes (Dirac-Majorana CP phases) constructed varying all the inputs in the neutrino

sector. However, it is fair to say that due to the smallness of sin2 θ13 ∼ 10−3 in this region,

the CP violation effects of the phases of the VEVs turn out to be suppressed in the MNS

matrix because the Dirac CP phase always appears in the form sin θ13e
iδ.

In order to complete the discussion about the neutrino sector in this scenario, we will

consider the possibility M1 > 0 instead of M1 < 0 . In section 3 we have seen that with
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Figure 5. (a) The variation of sin2 θ23 with respect to the relevant term that controls its evolution,

a2
µ/a2

τ . (b) The variation of sin2 θ13 with respect to the term that measures the νµ-ντ degeneracy.

M1 > 0 it is more complicated to have a degeneracy between muon and tau neutrinos

because it is easy to obtain sin2 θ12 ∼ 0, in contradiction with the data (see table 1).

Thus we will show a region where breaking the degeneracy νµ-ντ a normal hierarchy is

obtained with M1 > 0. This region is around the point of the parameter space shown in

table 11. In this example the angle sin2 θ13 can easily be made small as required by the

data, but it is not necessarily negligible. Thus the CP violating effects would be present in

the MNS matrix. Besides, we can roughly say that sin2 θ13 and sin2 θ12 are interchanged

with respect to the case discussed above with M1 < 0. For completeness, in figure 7a we

show the variation of sin2 θ13 with respect to the term that controls the gaugino seesaw
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Yν1
= 9.54 × 10−7 Yν2

= 9.47 × 10−7 Yν3
= 2.31 × 10−7 M1 = 350 GeV

ν1 = 8.59 × 10−5 GeV ν2 = 2.25 × 10−4 GeV ν3 = 2.29 × 10−4 GeV

Table 11. Numerical values of the relevant neutrino/neutralino-sector inputs that reproduce the

neutrino experimental constraints, and correspond to the normal hierarchy scenario with M1 > 0.
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Figure 6. δ−φ1 plane (a) and δ−φ2 plane (b) for the scenario with normal hierarchy and negative

gaugino masses M < 0, varying simultaneously Yνi
, νi, M1.

relevant in this case, namely b2
e/(b

2
µ + b2

τ ). We also plot in figure 7b sin2 θ12 as a function

of the relevant term that controls the Higgsino-νc seesaw
4aµaτ

(aµ+aτ )2
. As mentioned above,

an interesting feature of this region of the parameter space is that the effect of the Dirac

CP phase in the MNS is not removed, since the value of sin θ13 is not negligible. Figure 8

shows the derived CP phases of the MNS matrix.

For the sake of completeness, we show in table 12 an example where the inverse hier-

archy scenario is achieved.

At this point it is clear that there are many regions with different characteristics, dif-

ferent compositions for the lightest neutralino or regions close to the tri-bimaximal mixing

regime for normal or inverted hierarchy that can be found with different neutrino parame-

ters. Furthermore, we have seen that the µνSSM with SCPV predicts non-zero CP-violating

phases in the neutrino sector. If in the future a non-zero CP violating phase in the lepton

sector is measured, SCPV as the one analyzed here could be a possible source.

Neutrino oscillations are sensitive only to the Dirac CP phase (insensitive to the Ma-

jorana phases). Let us briefly comment about the possible determination of δ in future

neutrino experiments. The conservation of CP implies P (να → νβ) = P (ν̄α → ν̄β). If CP
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Figure 7. (a) The variation of sin2 θ13 with respect to the relevant term that controls its evolution.

(b) The variation of sin2 θ12 with respect to the relevant term 4aµaτ/(aµ + aτ )2.

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

φ 1
/π

δ/π

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

φ 2
/π

δ/π

(a) (b)

Figure 8. δ−φ1 plane (a) and δ−φ2 plane (b) for the scenario with normal hierarchy and positive

gaugino masses M > 0, varying simultaneously Yνi
, νi, M1.

is not conserved, we would have [30]

P (νµ → νe) − P (ν̄µ → ν̄e) = −16J sin

(

∆m2
12L

4E

)

sin

(

∆m2
13L

4E

)

sin

(

∆m2
23L

4E

)

, (4.3)

where L is the oscillation length, E is the neutrino beam energy and J is the Jarlskog

invariant for the neutrino mass matrix which is given by J = s12c12s23c23s13c
2
13 sin δ. There

is only an upper experimental limit for J , J < 0.04. The reason is that J depends on θ13

and δ, which are currently unknown. If θ13 vanishes (recall the bound sin2 θ13 < 0.038) J

vanishes and the effect of CP violation via (4.3) would be unobservable. The same occurs

if there was a degeneracy in the neutrino masses. In spite of these extreme situations the
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Yν1
= 5.98 × 10−7 Yν2

= 1.32 × 10−6 Yν3
= 1.40 × 10−6 M1 = 340 GeV

ν1 = 3.276 × 10−4 GeV ν2 = 6.20 × 10−5 GeV ν3 = 6.56 × 10−5 GeV

Table 12. Numerical values of the relevant neutrino/neutralino inputs that reproduce the neutrino

experimental constraints, and correspond to the inverted hierarchy scenario.

λi = 0.13 κi = 0.55 νc
1 = 900 GeV , νc

2 = νc
3 = 600 GeV

tan β = 29 ϕv = 0 ϕνc
1

= π
100

ϕνc
2

= ϕνc
3

= − π
100 χ1 = − π

90 χ2 = χ3 = π
90

Table 13. Numerical values of the relevant inputs of a global minimum that breaks CP sponta-

neously with small phases.

process (4.3) implies that long baseline experiments allow the observation of CP violation

due to the Dirac phase δ in the neutrino sector. Two experiments are designed for this

purpose: NOνA [31] and the T2KK detector [32].

On the other hand, although Majorana phases affect neutrinoless double beta decay

0νββ [33], their determination turn out to be difficult.

Let us finally briefly discuss the implications of the CP-violating phases concerning

the electric dipole moments (EDMs) in the µνSSM. As is well known, EDMs impose im-

portant constraints on supersymmetric theories. The MSSM (with explicit CP violation

in the soft Lagrangian) predicts EDMs about three orders of magnitude larger than the

experimental bounds for the EDM of the electron and neutron if the supersymmetric CP

violating phases are O(1) and the supersymmetric particles have masses near their current

experimental bounds O(100 GeV ) [34]. There are three kind of solutions to this problem

in supersymmetric theories. First, if the supersymmetric CP violating phases are very

small, of order O(10−2 − 10−3) the EDM bounds can be easily satisfied [34]. Second, if

the supersymmetric scalar particles are decoupled with masses larger than about 3TeV,

and thus out of reach of the LHC, but not spoiling the solution of supersymmetry to the

hierarchy problem, the EDM bounds could also be accomplished [35]. Third, there can be

internal cancellations between the different contributions to the EDMs [36].

We would like to point out that the µνSSM with SCPV could implement these three

kind of solutions. First of all, the possibility of small supersymmetric CP phases is present

in our model. Let us show for example a global minimum that break CP spontaneously

with O(10−2) CP phases (we have also found global minima with O(10−3) phases). The

values of the soft parameters not determined by the minimization equations are chosen

to be (Aκκ)iii = −175 GeV for i 6= 1, (Aκκ)ijk = 100 GeV for i, j, k 6= 1 and (Aκκ)ijk =

−100 GeV for one or two indices equal to 1. The numerical values of the phases and the

rest of input parameters are presented in tables 13 and 14.

It is worth remarking here that in models with SCPV small phases are not unnatural,

since they arise as a consequence of the minimization conditions (notice that the use of

phases as inputs in this work is just an artifact of the computation) for particular values

of the soft terms.
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Yν1
= 1.9 × 10−7 Yν2

= Yν3
= 1.06 × 10−6 M1 = 300 GeV

ν1 = 1.54 × 10−4 GeV ν2 = ν3 = 2.4 × 10−5 GeV

Table 14. Numerical values of the neutrino/neutralino inputs that reproduce the neutrino experi-

mental constraints for the global minimum with small phases.

The other two solutions, heavy scalars and internal cancellations, can also be im-

plemented. Notice that the following soft parameters remain free in our model be-

cause they are not included in either the neutral scalar potential or the neutrino sector:

(AuYu)ij , m2
ũc

ij
, M3 , (AeYe)ij , m2

ẽc
ij
. Thus, the solution with heavy scalars remains valid

for scalar masses heavier than about 3TeV. We also expect the internal cancellation solu-

tion to be valid in our model. This is because these free parameters enter in the calculation

of the EDMs, and we will have enough freedom to find values where such cancellations can

be accomplished, fulfilling the EDMs bounds.

5 Conclusions

In this work we have studied in detail the neutrino sector of the µνSSM. We have also

shown that, even if all parameters in the scalar potential are real, SCPV is possible at tree

level, and we have used these vacua to show how a complex MNS matrix can arise.

In particular, we have calculated first the scalar potential of the µνSSM with real

parameters, assuming the most general situation where the VEVs of Higgses and sneutrinos

can be complex. We have shown, using a simple argument, that CP can actually be

spontaneously violated in this model.

Then we have discussed the neutralino-neutrino mass matrix of the µνSSM, and we

have shown how to obtain from it the effective neutrino mass matrix. Although the dis-

cussion is general, we have applied it also to the particularly interesting case of real vacua.

We have analyzed how the electroweak seesaw mechanism works in the µνSSM using ap-

proximate analytical equations, particularized for certain interesting limits that clarify the

neutrino-sector behavior of the model. In addition, we have given the qualitative idea

of how to find regions in the parameter space of the model that satisfy the neutrino ex-

perimental constraints. Let us remark that these constraints can be fulfilled even with a

diagonal neutrino Yukawa matrix, since this seesaw does not involve only the right-handed

neutrinos but also the MSSM neutralinos. Actually, to obtain the correct neutrino angles

turns out to be easy due to the following characteristics of this seesaw: R-parity is bro-

ken and the relevant scale is the electroweak one. In a sense, this gives an answer to the

question why the mixing angles are so different in the quark and lepton sectors.

Finally, we have presented our results describing the method to obtain numerically

global minima with SCPV, and giving examples of such minima. Let us emphasize how-

ever that, unlike the case with real VEVs where many global minima can be found, for the

case with complex VEVs such minima are not so easy to find. In particular, one has to

choose carefully the parameters of the model. For the examples found we have shown the
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dependence of the neutrino mass differences (for both normal and inverted hierarchies),

mixing angles, and CP phases of the MNS matrix, in terms of the relevant neutrino inputs.

Last but not least, we have checked that different regions of the parameter space can repro-

duce the neutrino experimental constraints. In this context, future neutrino experiments

could be able to measure a non-zero Dirac CP-violating phase, opening the possibility to

SCPV in the µνSSM as the dominant source.
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A Minimization equations

Here we write first the eight minimization conditions with respect to the moduli vd, vu,
νc

i , νi:

1

4
G2

(

∑

i

νiνi + v2
d − v2

u

)

vd + m2
Hd

vd + vdv
2
u

∑

i

(λi)
2 −

∑

i

(Aλλ)iν
c
i vu cos(ϕv + ϕνc

i
)

+
∑

i,j

vdλiλjν
c
i ν

c
j cos(ϕνc

i
− ϕνc

j
) −

∑

i,j,k

κikjλkvuνc
i νc

j cos(ϕνc
i

+ ϕνc
j
− ϕv)

−
∑

i,j,k

Yνij
λkνiν

c
j νc

k cos(χi + ϕνc
j
− ϕνc

k
− ϕv) −

∑

i

∑

j

Yνij
λjv

2
uνi cos(ϕv − χi) = 0,

(A.1)

−1

4
G2

(

∑

i

νiνi + v2
d − v2

u

)

vu + m2
Hu

vu + vuv2
d

∑

i

(λi)
2

+
∑

i,j

(AνYν)ijνiν
c
j cos(χi + ϕνc

j
) −

∑

i

(Aλλ)iν
c
i vd cos(ϕv + ϕνc

i
)

+
∑

i,j

λiλjvuνc
i νc

j cos(ϕνc
i
− ϕνc

j
) −

∑

i,j

∑

k

κijkλkvdν
c
i νc

j cos(ϕνc
i

+ ϕνc
j
− ϕv)

+
∑

i,j,k

∑

l

Yνjl
κilkνjν

c
i ν

c
k cos(ϕνc

i
+ ϕνc

k
− χj) −

∑

i

∑

j

2Yνij
λjvdvuνi cos(ϕv − χi)

+
∑

i,j

∑

k

Yνik
Yνjk

vuνiνj cos(χi − χj) +
∑

i,j

∑

k

Yνki
Yνkj

vuνc
i ν

c
j cos(ϕνc

i
− ϕνc

j
) = 0,

(A.2)
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∑

j

m2
eνc

ij
νc

j cos(ϕνc
i
− ϕνc

j
) − (Aλλ)ivuvd cos(ϕv + ϕνc

i
) +

∑

j

(AνYν)jiνjvu cos(χj + ϕνc
i
)

+
∑

j,k

(Aκκ)ijkνc
jν

c
k cos(ϕνc

i
+ ϕνc

j
+ ϕνc

k
) +

∑

j

λiλjv
2
dνc

j cos(ϕνc
i
− ϕνc

j
)

+
∑

j

λiλjν
c
jv

2
u cos(ϕνc

i
− ϕνc

j
) +

∑

j,k,l

∑

m

2κimkκlmjν
c
jν

c
kνc

l cos(ϕνc
i

+ ϕνc
j
− ϕνc

k
− ϕνc

l
)

−
∑

j

∑

k

2κijkλkvdvuνc
j cos(ϕνc

i
+ ϕνc

j
− ϕv)+

∑

j,k

∑

l

2Yνjl
κiklvuνjν

c
k cos(ϕνc

i
+ ϕνc

k
− χj)

−
∑

j,k

Yνji
λkvdνjν

c
k cos(χj + ϕνc

i
− ϕνc

k
− ϕv)−

∑

j,k

Yνkj
λivdνkνc

j cos(χk + ϕνc
j
− ϕνc

i
− ϕv)

+
∑

j,k,l

Yνji
Yνlk

νjνlν
c
k cos(χj − χk + ϕνc

i
− ϕνc

l
) +

∑

j

∑

k

Yνki
Yνkj

v2
uνc

j cos(ϕνc
i
− ϕνc

j
) = 0,

(A.3)

1

4
G2





∑

j

νjνj + v2
d − v2

u



 νi +
∑

j

m2
L̃ij

νj cos(χi − χj) +
∑

j

(AνYν)ijν
c
jvu cos(χi + ϕνc

j
)

+
∑

j,k

∑

l

Yνil
κjlkvuνc

jν
c
k cos(ϕνc

j
+ ϕνc

k
− χi)

−
∑

j,k

Yνij
λkvdν

c
jν

c
k cos(χi + ϕνc

j
− ϕνc

k
− ϕv) −

∑

j

Yνij
λjvdv

2
u cos(ϕv − χi)

+
∑

j,k,l

YijYνkl
νc

j νkνc
l cos(χi − χk + ϕνc

j
− ϕνc

l
) +

∑

j

∑

k

Yνik
Yνjk

v2
uνj cos(χi − χj) = 0.

(A.4)

The seven minimization conditions with respect to the phases ϕv , ϕνc
i

and χi are:

−
∑

i,j

∑

k

2κijkλkvdvuνc
i ν

c
j sin(ϕνc

i
+ ϕνc

j
− ϕv)

−2





∑

i,j,k

Yνij
λkvdνiν

c
j νc

k sin(χi + ϕνc
j
− ϕνc

k
− ϕv) −

∑

i

∑

j

Yνij
λjvdv

2
uνi sin(ϕv − χi)





+2
∑

i

(Aλλ)iν
c
i vdvu sin(ϕv + ϕνc

i
) = 0,

(A.5)

−
∑

j

m2
ν̃c

ij
νc

i ν
c
j sin(ϕνc

i
−ϕνc

j
)−
∑

j

λiλjv
2
dνc

i ν
c
j sin(ϕνc

i
−ϕνc

j
)−
∑

j

λiλjv
2
uνc

i νc
j sin(ϕνc

i
−ϕνc

j
)

−2
∑

j,k,l

∑

m

κimkκlmjν
c
i ν

c
jν

c
kνc

l sin(ϕνc
i

+ ϕνc
j
− ϕνc

k
− ϕνc

l
)

+2
∑

j,k

κikjλkvdvuνc
i ν

c
j sin(ϕνc

i
+ϕνc

j
−ϕv) −2

∑

j,k

∑

l

Yνjl
κilkvuνjν

c
i ν

c
k sin(ϕνc

i
+ϕνc

k
−χj)

+
∑

j,k

Yνji
λkvdνjν

c
i ν

c
k sin(χj+ϕνc

i
−ϕνc

k
−ϕv)−

∑

j,k

Yνkj
λivdνkνc

jν
c
i sin(χk+ϕνc

j
−ϕνc

i
−ϕv)

−
∑

j,k,l

Yνji
Yνkl

νjν
c
i νkνc

l sin(χj−χk+ϕνc
i
−ϕνc

l
)−
∑

j

∑

k

Yνki
Yνkj

v2
uνc

i νc
j sin(ϕνc

i
−ϕνc

j
)
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+(Aλλ)iν
c
i vdvu sin(ϕv + ϕνc

i
) −

∑

j,k

(Aκκ)ijkνc
i νc

jν
c
k sin(ϕνc

i
+ ϕνc

j
+ ϕνc

k
)

−
∑

j

(AνYν)jivuνjν
c
i sin(χj + ϕνc

i
) = 0,

(A.6)

−
∑

j

m2
L̃ij

νi νj sin(χi − χj) +
∑

j,k

∑

l

Yνil
κjlkvuνiν

c
jν

c
k sin(ϕνc

j
+ϕνc

k
−χi)

+
∑

j,k

Yνij
λkvdνiν

c
jν

c
k sin(χi+ϕνc

j
−ϕνc

k
−ϕv) −

∑

j

Yνij
λjvdv

2
uνi sin(ϕv − χi)

−
∑

j,k,l

Yνij
Yνkl

νiν
c
j νkνc

l sin(χi − χk + ϕνc
j
− ϕνc

l
) −

∑

j

∑

k

Yνik
Yνjk

v2
uνiνj sin(χi − χj)

−
∑

j

(AνYν)ijvuνiν
c
j sin(χi + ϕνc

j
) = 0.

(A.7)

B Analitical formula for neutrino masses

The formula presented here is obtained from eq. (3.4) neglecting terms proportional to

Y 2
ν ν2, Y 3

ν ν and Yνν
3, and has been particularized for the simplified case discussed in

section 4 of a common value of couplings λi ≡ λ, a tensor κ with terms κiii ≡ κi ≡ κ

and vanishing otherwise, diagonal Yukawa couplings Yνii
≡ Yνi

, and a common value of

the VEVs νc
i ≡ νc. The phase structure of the global minimum discussed in section 4 for

analyzing the neutrino sector, ϕνc
1

= −ϕνc
2

= −ϕνc
3
≡ ϕνc and ϕν1

= −ϕν2
= −ϕν3

≡ ϕν ,

has also been used in the computation. Then we arrive to the following formula:

(meff)ij ≃ Xij

∆
+

Tij

Z

aiaj

2κνc
, (B.1)

where the parameters have been defined as

ai = Yνi
vu,

∆ =
(

eiϕνc + 2ei3ϕνc
)

λ2
(

v2
u + v2

d

)2
+
(

8eiϕνc + 4ei3ϕνc
)

λκνc2vdvue−iϕv

−
(

16 + 16ei2ϕνc + 4ei4ϕνc
)

Mλ2κνc3 −
(

8 + 20ei2ϕνc + 8ei4ϕνc
)

Mλ3νcvdvueiϕv ,

Z = eiϕνc

[

−4eiϕνc
(

2 + ei2ϕνc
)

κνc2vdvu + eiϕvλ
(

4M
(

2 + ei2ϕνc
)2

κνc3

− eiϕνc
(

1 + 2ei2ϕνc
) (

v2
d + v2

u

)2
)

+ 4ei2(ϕνc +ϕv)λ2Mνcvdvu (5 + 4 cos 2ϕνc)
]

, (B.2)

with 1
M =

g2

1

M1
+

g2

2

M2
,

T11 = 2ei2ϕv [−4ei2(ϕνc +ϕv)(2 + ei2ϕνc )Mλ2νcvdvu + 4eiϕνc κνc2vdvu

+eiϕvλ(−4(2 + ei6ϕνc )Mκνc3 + ei3ϕνc (v2
u + v2

d)
2)],

T22 = T33 = 2ei(ϕνc+2ϕv)[−4ei2(ϕνc +ϕv)(2 + ei2ϕνc )Mλ2νcvdvu + 4ei3ϕνc κνc2vdvu

+eiϕvλ(−4(1 + ei2ϕνc + ei4ϕνc )Mκνc3 + ei3ϕνc (v2
u + v2

d)
2)],
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T12 = T13 = −ei2ϕv [−4ei2(ϕνc +ϕv)(2 + ei2ϕνc )Mλ2νcvdvu + 4ei3ϕνc κνc2vdvu cos(2ϕνc)

+ei(3ϕνc+ϕv)λ(4(−3 cos(3ϕνc) + i sin (3ϕνc))Mκνc3 + (v2
u + v2

d)
2)],

T23 = −ei2ϕv [−4ei2(2ϕνc +ϕv)(2 + ei2ϕνc )Mλ2νcvdvu + 4ei3ϕνc κνc2vdvu

+eiϕvλ(−4(−1 + 4ei3ϕνc cos(ϕνc))Mκνc3 + ei5ϕνc (v2
u + v2

d)
2)], (B.3)

and

X11 = 2κνc3(b11)
2 + 2λνcvdvueiϕv (b′11)

2 + ǫ11,

X22 = 2κνc3(b22)
2 + 2λνcvdvueiϕv (b′22)

2 + ǫ22,

X33 = 2κνc3(b33)
2 + 2λνcvdvueiϕv (b′33)

2 + ǫ33,

X12 = 2κνc3(b11)(b22) + 2λνcvdvueiϕv (b′12)
2 + ǫ12,

X13 = 2κνc3(b11)(b33) + 2λνcvdvueiϕv (b′13)
2 + ǫ13,

X23 = 2κνc3(b22)(b33) + 2λνcvdvueiϕv (b′23)
2 + ǫ23, (B.4)

with

(b11) = (2 + ei2ϕνc )λe−iϕν ν1 + ei2ϕνc vdYν1
,

(b22) = (2 + ei2ϕνc )λeiϕν ν2 + vdYν2
,

(b33) = (2 + ei2ϕνc )λeiϕν ν3 + vdYν3
,

(b′11)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2e−i2ϕν ν2

1

+(2 + 2ei2ϕνc + 2ei4ϕνc )λvde
−iϕν ν1Yν1

+ ei2ϕνc v2
dY

2
ν1

,

(b′22)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ei2ϕν ν2

2

+(1 + 4ei2ϕνc + ei4ϕνc )λvde
iϕν ν2Yν2

+ ei2ϕνc v2
dY

2
ν2

,

(b′33)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ei2ϕν ν2

3

+(1 + 4ei2ϕνc + ei4ϕνc )λvde
iϕν ν3Yν3

+ ei2ϕνc v2
dY

2
ν3

,

(b′12)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ν1ν2 + (1 + ei2ϕνc + ei4ϕνc )λvde

iϕν ν2Yν1

+((1/2) + 2ei2ϕνc + (1/2)ei4ϕνc )λvde
−iϕν ν1Yν2

+ (1/2)(1 + ei4ϕνc )v2
dYν1

Yν2
,

(b′13)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ν1ν3 + (1 + ei2ϕνc + ei4ϕνc )λvde

iϕν ν3Yν1

+((1/2) + 2ei2ϕνc + (1/2)ei4ϕνc )λvde
−iϕν ν1Yν3

+ (1/2)(1 + ei4ϕνc )v2
dYν1

Yν3
,

(b′23)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ei2ϕν ν2ν3

+((1/2)+2ei2ϕνc +(1/2)ei4ϕνc )λvde
iϕν (ν3Yν2

+ν2Yν3
)+ei2ϕνc v2

dYν2
Yν3

(B.5)

and

ǫ11 = (4ei4ϕνc − 4)λ2νcv3
ueiϕve−iϕν ν1Yν1

,

ǫ22 = (2 − 2ei4ϕνc )λ2νcv3
ueiϕveiϕν ν2Yν2

,

ǫ33 = (2 − 2ei4ϕνc )λ2νcv3
ueiϕveiϕν ν3Yν3

,

ǫ12 = (2ei4ϕνc − 2)λ2νcv3
ueiϕveiϕν ν2Yν1

+ (1 − ei4ϕνc )λ2νcv3
ueiϕve−iϕν ν1Yν2

,

ǫ13 = (2ei4ϕνc − 2)λ2νcv3
ueiϕveiϕν ν3Yν1

+ (1 − ei4ϕνc )λ2νcv3
ueiϕve−iϕν ν1Yν3

,

ǫ23 = (1 − ei4ϕνc )λ2νcv3
ueiϕveiϕν (ν3Yν2

+ ν2Yν3
). (B.6)
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Let us discuss two particular limits where the formula becomes simple. In the limit

M → ∞ and vd → 0 we obtain

(meff)ij ≃ Fij
aiaj

2κνc
, (B.7)

where

F11 = −2ei(2ϕv−ϕνc)(2 + ei6ϕνc )
(

2 + e2iϕνc
)−2

,

F22 = F33 = −2ei(2ϕv−ϕνc)(1 + ei2ϕνc + ei4ϕνc )
(

2 + e2iϕνc
)−2

,

F12 = F13 = ei2(ϕνc+ϕv)(3 cos(3ϕνc) − i sin (3ϕνc)
(

2 + e2iϕνc
)−2

,

F23 = ei(2ϕv−ϕνc )(4ei3ϕνc cos(ϕνc) − 1)
(

2 + e2iϕνc
)−2

. (B.8)

In the limit of vanishing phases, i.e. real VEVs, we obtain

(meff |real)ij ≃ 2

3

(κνc2 + λvuvd)ν
c

λ2(v2
u + v2

d)
2 + 4λκνc2vuvd − 12Mλ(κνc2 + λvuvd)λνc

bibj

+
1

6κνc
(1 − 3δij)aiaj, (B.9)

where we have defined

bi = Yνi
vd + 3λνi. (B.10)

Regarding the previous parameters we note that for the real case

bi = bii = b′ii,

b′2ij = bii bjj = bi bj,

ǫij = 0. (B.11)
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